(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^2).
The TRS R consists of the following rules:
*(x, *(y, z)) → *(otimes(x, y), z)
*(1, y) → y
*(+(x, y), z) → oplus(*(x, z), *(y, z))
*(x, oplus(y, z)) → oplus(*(x, y), *(x, z))
Rewrite Strategy: INNERMOST
(1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)
The TRS does not nest defined symbols.
Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
*(x, *(y, z)) → *(otimes(x, y), z)
(2) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^2).
The TRS R consists of the following rules:
*(x, oplus(y, z)) → oplus(*(x, y), *(x, z))
*(1, y) → y
*(+(x, y), z) → oplus(*(x, z), *(y, z))
Rewrite Strategy: INNERMOST
(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
*(z0, oplus(z1, z2)) → oplus(*(z0, z1), *(z0, z2))
*(1, z0) → z0
*(+(z0, z1), z2) → oplus(*(z0, z2), *(z1, z2))
Tuples:
*'(z0, oplus(z1, z2)) → c(*'(z0, z1), *'(z0, z2))
*'(1, z0) → c1
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
S tuples:
*'(z0, oplus(z1, z2)) → c(*'(z0, z1), *'(z0, z2))
*'(1, z0) → c1
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
K tuples:none
Defined Rule Symbols:
*
Defined Pair Symbols:
*'
Compound Symbols:
c, c1, c2
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
*'(1, z0) → c1
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
*(z0, oplus(z1, z2)) → oplus(*(z0, z1), *(z0, z2))
*(1, z0) → z0
*(+(z0, z1), z2) → oplus(*(z0, z2), *(z1, z2))
Tuples:
*'(z0, oplus(z1, z2)) → c(*'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
S tuples:
*'(z0, oplus(z1, z2)) → c(*'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
K tuples:none
Defined Rule Symbols:
*
Defined Pair Symbols:
*'
Compound Symbols:
c, c2
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
*(z0, oplus(z1, z2)) → oplus(*(z0, z1), *(z0, z2))
*(1, z0) → z0
*(+(z0, z1), z2) → oplus(*(z0, z2), *(z1, z2))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
*'(z0, oplus(z1, z2)) → c(*'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
S tuples:
*'(z0, oplus(z1, z2)) → c(*'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
*'
Compound Symbols:
c, c2
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
We considered the (Usable) Rules:none
And the Tuples:
*'(z0, oplus(z1, z2)) → c(*'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(*'(x1, x2)) = x1 + [2]x1·x2
POL(+(x1, x2)) = [1] + x1 + x2
POL(c(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(oplus(x1, x2)) = [1] + x1 + x2
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
*'(z0, oplus(z1, z2)) → c(*'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
S tuples:
*'(z0, oplus(z1, z2)) → c(*'(z0, z1), *'(z0, z2))
K tuples:
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
Defined Rule Symbols:none
Defined Pair Symbols:
*'
Compound Symbols:
c, c2
(11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
*'(z0, oplus(z1, z2)) → c(*'(z0, z1), *'(z0, z2))
We considered the (Usable) Rules:none
And the Tuples:
*'(z0, oplus(z1, z2)) → c(*'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(*'(x1, x2)) = x2 + x1·x2
POL(+(x1, x2)) = [2] + x1 + x2
POL(c(x1, x2)) = x1 + x2
POL(c2(x1, x2)) = x1 + x2
POL(oplus(x1, x2)) = [2] + x1 + x2
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
*'(z0, oplus(z1, z2)) → c(*'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
S tuples:none
K tuples:
*'(+(z0, z1), z2) → c2(*'(z0, z2), *'(z1, z2))
*'(z0, oplus(z1, z2)) → c(*'(z0, z1), *'(z0, z2))
Defined Rule Symbols:none
Defined Pair Symbols:
*'
Compound Symbols:
c, c2
(13) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(14) BOUNDS(1, 1)